Does Space Exploration have an ROI?

It’s easy to dismiss the current space program as a giant waste of money. Collectively, the world spends billions upon billions of dollars launching tiny pieces of metal into the sky. How could that possibly be better than, say, building a school in India or providing clean water to poor African countries, or even spending it domestically to improve our country? In the face of recent budget crises, this cry gains even more clout.

And indeed, a lot of space programs are very wasteful, especially NASA and the Roscosmos. However, this is generally due to the fact that politicians treat space as a football — another barrel of pork for their constituents. When politics and space exploration mix, you get bloated programs like the Space Shuttle and the new SLS. It’s much better when the politicians set broad goals (AKA land on the moon), fork over the money, and let the engineers work their magic. Otherwise you get a twisted maze of bureaucracy and general management which ends with wasted money and subpar designs.

But let us not forget that NASA has produced a number of very tangible technological advancements, which is summarized here better than I could. In addition, satellites are a cornerstone of the global communications network, not to mention the Global Positioning System, which is satellites. Although communications satellites are now built and launched by commercial ventures, NASA was the first and only customer for a while, and allowed companies to get some expertise in designing and building rockets. Furthermore, the space industry employs tens of thousands of people, all possible because of initial government funding.

However, those examples involve geostationary orbit at the most. What is the practical value of going out and scanning the other bodies in our solar system. Why should we launch space telescopes and space probes? If you don’t believe in the inherent value of knowledge, here is a very down-to-earth example (so to speak): the Solar and Heliospheric Observatory (SOHO) watches the sun 24/7 from L1. It gives us an advance warning for solar flares, allowing satellite operators enough time to turn their expensive pieces of equipment away from the sun, shielding the most delicate electronics from the impending wave of radiation. It is estimated that SOHO has paid for itself 10 times over in this fashion.

Finally, part of space exploration is the attempt to answer some of the big questions. Deep space telescopes answer some part of “Where did we come from?”, and probes to the surfaces of other planets and moon are often trying to answer “Are we alone?”. If you think this is far too sentimental an appeal, I urge you to imagine the ramifications if a future mission to Europa found microorganisms living in the oceans under the ice, or a mission to Mars found lithophiles buried under the Martian regolith. How would world philosophies change?

Regardless, we may be spending too much money and spending it in the wrong places. I submit to you the Indian space program, which designed and launched a mission to Mars for about 75 million dollars. I think the US should follow India’s example and lean towards frugality and very specific, directed goals. Accomplishing a single mission for a small amount of money is better, in my opinion, than developing several high-profile, high-cost programs simultaneously.

While my language and previous post may make it seem like I am opposed to any sort of space exploration, I am merely of the opinion that our society views space exploration in the wrong way. Space exploration should not be about sending humans to other bodies, at least not right now. It should be about trying to find out more about the rest of our solar system, so we can extrapolate and make predictions about the other systems and exoplanets we are discovering. And if all else fails, it can be a platform for many kinds of materials and electronics research.

Using Games to Educate

In the last few years we’ve seen the Internet playing a larger and larger role in education. Everyone seems to expect a revolution in education within 20 years. It’s possible, although I don’t think it will come from the direction that everyone thinks it will (see my post on online education). I want to give my two cents about an ancillary approach: videogames. Games don’t have to teach the students anything. In fact, I think they are much more useful as vehicles for the education. Games provide a background, a context, for new knowledge. For example, playing Deus Ex: Human Revolution (play chapters of a game as homework instead of reading chapters of a book?) could help spark discussion about the current situation of computers, implants, artificial intelligence, politics, etc. The experiences within the game outside of the lesson help students stay interested and apply the knowledge, even if subconsciously, beyond the classroom.

I’m going to focus on two games: Kerbal Space Program and Minecraft. Prmrytchr has a whole blog on using Minecraft (as well as other games) in the classroom, so I’m going to focus on the technical aspects.

the KSP splash

Kerbal Space Program (KSP) is an indie game currently under development with an open alpha available for purchase. In the game, you run the space agency of a particularly derpy alien race in their Sol-like system. In sandbox mode, you can throw together rockets, probes, rovers, space stations, planes, and planetary bases from a wide assortment of parts. Then you launch your constructions and control them to the best of your abilities.

KSP Screenshot KSP Screenshot 2

While hard to grasp at first, the game is incredibly fun. You do need a rudimentary understanding of kinematics to play well. This is the first step in its ability to act as an educational tool. While you can strap an engine onto a fuel tank and try to fly it, you quickly realize that doing anything impressive — such as putting an object in orbit — requires a bit of education. While you could watch tutorials, you could also get a lesson about basic kinematics and orbital mechanics from a present teacher. There’s an opportunity for lessons on engineering, as well.

As students become more proficient, more complex opportunities open up to them. Orbital rendezvous and gravitational slingshots get more involved physically. Spacecraft design, between mass conservation, fuel-mass ratio, reaction thruster placement, and properties of engines, is a great opportunity for springboarding into other physics. Other elements of spacecraft design that aren’t simulated in KSP, such as heat management, enter the realm of thermodynamics. Ancillary topics that arise when discussing space exploration can involve relativity and electromagnetic waves.

minecraft splashMinecraft, on the other hand, is about as physically unrealistic as you can get. However, it provides an awesome way to teach logic and economics. Even vanilla Minecraft has a growing arsenal of parts which allow rudimentary (or not so rudimentary) automation. Redstone is a powerful tool for doing any sort of logical manipulation — or teaching it. Watching your toolbox of gates and mechanisms grow out of a few basic ground rules is amazing. Creative minds are pushed to imagining new ways of using redstone, pistons, minecarts, and all the other machines being added in. While I’m not a fan, mods like Technic or Tekkit expand the array of basic parts at your disposal.

Multiplayer in Minecraft is an interesting case study of economic theory. Because the system varies so much from the real world, it provides an outside perspective on traditional economic theory. As you teach the basics of microeconomics, you can analyze why Minecraft’s multiplayer economy and identify how to restrict it. The ultimate goal of the class could be to establish a working economic system on a Minecraft server (perhaps through plugins/mods?).

Redstone Schematic Redstone Screenshot

Whether or not any of these are good ideas, it illuminates how games don’t have to be the primary vehicle of learning to be a useful educational tool. Games can merely be a springboard, a point of reference from which lessons emerge. The game keeps the students interested and grounded in the topic, while providing a useful outlet and vector of fortification for the knowledge they are getting in class.

%d bloggers like this: