Fetishizing Apollo

America has an unhealthy obsession with historic US space missions. This obsession is even more pronounced in the space-enthusiast community; it is no surprise that there are multitudes of mods for KSP that allow users to build and fly their very own Saturn V rocket. Really, America’s fixation on the 1960s and -70s era NASA programs has achieved a pornographic level (I use this word not in the sexual meaning, but in the same sense as in the pornography of violence).

It is an understandable attraction, I suppose — many of the iconic space photographs were taken by Apollo astronauts.

earthrise astronaut fullearth

Landing people on the Moon might be considered one of mankind’s greatest achievements, and was certainly the height of glory for the US space program.

But the level at which America has turned the moon missions into a fetish is astounding. Countless books, movies, rehashed TV series, photo remasters, articles, celebrations… it’s depressing.

We should appreciate Apollo for what it was: an antenna. Celebrating Apollo is like including the antenna mast in the height measurement for a really tall building. Yes, the fact that we stuck a tall pole on top of a tall building is cool, but it’s not really the pole that you’re interested in, is it?

People like thinking about Apollo because they like the idea of humans expanding into space, and in their mind Apollo is the farthest we’ve ever gotten towards that goal. It’s an understandable misconception, considering the Moon is literally “the farthest humans have ever gone”. But Apollo was unsustainable (even if the Apollo Applications Program had gone forwards, it still would have been a step in the wrong direction!). We are now much closer to accomplishing the goal of long-term human expansion into space than we ever were.

SLS, more like SMH

Granted, it won’t be painted the same way in real life.

This is why the SLS is so disappointing, I think. Right now we have highly advanced computing and robotics technologies, excellent ground support infrastructure for space missions, incredibly advanced materials knowledge, and a huge array of novel manufacturing techniques being developed. As a civilization, we are much more ready to colonize space than we were a half-century ago. Yet the government has decided the best way to start human expansion into space is to build a cargo cult around Apollo. The US is building a rocket that looks like the Saturn V, as if some sort of high-tech idolatry will bring back the glory of Apollo. They are resurrecting an architecture that was never a good idea to begin with!

The space program paradigm is outdated. Despite my most optimistic hopes, let’s be real: the next big driver in space travel will be high-power corporations following the profits of a few innovative companies that pioneer the market. It won’t be enthusiastic supporters than become the first space colonists, but employees doing their stint in the outer solar system before returning to Earth.

Mass Paradigm

One of the most interesting things to think about with respect to the near-future of space travel is the removal of limited mass as a paradigm. That is to say, right now the predominate design constraint for spacecraft is mass, because rockets are very expensive, so each kilogram of payload must be put to best use. Unfortunately, this means that the design and construction costs for spacecraft are very high, as much effort is put towards shaving off grams by using exotic materials and efficient designs.

But soon the current launch vehicle renaissance will result in launch costs low enough to demolish the limited-mass paradigm. There is a tipping point where it is economical to cut design costs and take the hit on launch costs. There will also see a growing emphasis on tough and reliable systems that last a long time, rather than fragile, light, efficient systems. Combined with lower fuel costs from asteroid mining and improved refueling technologies, the predominant modus operandi will be repairing spacecraft rather than replacing spacecraft. Designing for reusability and, more importantly, refurbishment will be critical.

We’re already seeing a shift towards this paradigm with SpaceX. Their launch vehicles use redundant systems to make up for their cheaper designs — their avionics electronics, for example, are not rad-hardened but instead redundant in triplicate. The mass penalty is minimal, however they also make up for it by using modern electronics concepts. For instance, instead of running numerous copper wires up and down the length of their rockets, they run a single ethernet cable and use a lot of multiplexing.

This kind of change is just the beginning, however. There will be a time when it makes sense to loft a big bundle of steel rods into orbit and have workers weld them into a frame for a spaceship. This has a number of benefits: the frame doesn’t have to be fit into a fairing, it can be reconfigured on the fly, and it doesn’t have to endure the acceleration and acoustic stresses of launch. Additionally, lifting big bundles of steel makes best use of the volume in a launch vehicle fairing.

I think the only two questions about the future of space travel are: How much will it be dominated by robots? and Where will the money come from? But those are questions for another time.