A Manifested SLS

NASA recently released details on their planned architecture for human spaceflight in the coming two decades. This was a welcome update, because before now the plan was little more than “we build SLS, we do something around the Moon, then we go to Mars”. You may think that I’m joking or exaggerating. I’m not.

Fortunately, we don’t have to speculate in the dark anymore. We have hard details about what the SLS will be launching and how it will help NASA eventually land humans on Mars. Well, sort of. We have details about what the SLS will be launching, in any case.

NASA’s Plan

The plan revolves around two new pieces of infrastructure: the Deep Space Gateway (DSG) and the Deep Space Transport (DST). The DSG is essentially a space station in orbit around the Moon. The DST is a spacecraft for transporting humans from the DSG to Mars. The DST is reusable, and only stays in orbit. That is, it is simply a shuttle between Martian orbit and lunar orbit. Both the DSG and DST will be equipped with solar electric propulsion (SEP) modules, allowing the DSG to change its orbit around the Moon and allowing the DST to fly between the Moon and Mars without ditching any mass or refueling (electric propulsion is very efficient). Finally, the Orion capsule is used to transport astronauts between Earth and the DSG.

The SLS, NASA’s big new rocket, can launch an Orion capsule to lunar orbit along with 10 metrics tons (mT) of cargo (this configuration is called a co-manifested payload, or CMP). The SLS can also launch 40 mT of cargo to the Moon if launched without a crew. The DSG will be composed of four modular chunks, each launched as a CMP with a group of astronauts (one launch per year from 2022 to 2025). The astronauts will help assemble the DSG in lunar orbit before returning to Earth.

After the DSG is complete, a cargo launch of the SLS will loft the DST in 2027 as a monolithic (non-modular) spacecraft. Astronauts will run the DST through a shakedown cruise around the Moon in 2029, before embarking on some sort of Mars mission after 2030.

You might notice that this plan doesn’t actually specify what the Mars missions will look like. There are some vague hand-waved mentions of a mission to Phobos or Deimos (the moons of Mars), and then maybe landing on Mars. What kind of science will the DST be able to do? Surface samples from Phobos? In-situ resource utilization (ISRU) experiments? How will NASA send landers to Mars? What will they look like? Will NASA be landing support equipment on the surface ahead of time? Instead of going to Mars quickly and cheaply, we are going to spend a decade or more jerking off in lunar orbit, and it’s not clear why. At the end of this (unintentionally long) post, I will propose a plan that accomplishes the same thing with less money, less time, and less infrastructure.


But before addressing these more concrete questions, there are some existential questions that need to be addressed. For example: why? Why are we spending billions of dollars to launch a handful of humans into lunar orbit, and why are they monkeying around up there?

In an effort to answer these questions, let’s step back and answer the larger question: why do we care about sending people into space? There are certainly motivations for having infrastructure in space: GPS, communications, Earth and space weather monitoring, climate research. These activities have real economic value, but they don’t justify sending humans.

There is the scientific motivation: learning more about the stars and about the formation of the solar system and the origin of life. This is the rationale that NASA often cites. However, there are countless arguments to be made in favor of widespread robotic exploration: it’s cheaper and faster, robots can go more places, robots don’t have to come back, robots can stick around for longer, we aren’t risking planetary contamination, etc. These concerns outweigh the few benefits that humans do provide.

A third motivation, one that I suspect a lot of people at NASA actually believe in but would never dare say: we landed people on the Moon, then we stopped. We need to land people on Mars because space travel is cool, but we can’t justify just going back to the Moon. I think this stems from a larger infatuation with the vision of the future instilled in us by decades of media consumption. Science fiction depicts humanity among the stars, so we must go. I suspect this motivation is rather rampant among human spaceflight fans. Needless to say, this motivation is fucking stupid.

The only meaningful motivator for human spaceflight is neither economic nor scientific. The only reason to kick off interplanetary human spaceflight (and therefore the only reason to be interested in human spaceflight at all) is the distant goal of establishing a permanent, self-sustaining human presence off of the Earth in order to make sure our species never dies out. As a species, we must invest in the intrinsic value of this motivator, or give up human spaceflight once and for all. Doing it for any other reason is simply masturbatory.

Ok, so we care about sending people into space because we eventually want to establish a self-sufficient colony. We care about going to Mars because the surface of Mars is, for a whole host of reasons, the best place to create that colony. But why do we care about spending billions of dollars on an unscalable architecture to send a handful of humans on short trips around the Moon and Mars?

The answer is: maybe we shouldn’t. There are good, well-formed arguments against the whole endeavor. However, NASA has always been an organization that pioneers research into really difficult problems, and then gives their results to the public so that private companies can improve and capitalize on those advancements. If the government is set on spending billions of dollars on human spaceflight, we might as well spend it in a way that will help the eventual colonization of Mars.

So what kinds of unanswered questions or nebulous roadblocks stand between humanity and our intrinsically-valued goal of surviving a potential devastation of the Earth? Cutting past the leagues of logistical questions about a surface colony:

  • Data on the effect of long-term partial gravity on human biology
  • More data on the effect of long-term (500+ days) exposure to solar radiation
  • More data on the psychological effect of long-term separation from Earth
  • Research on high-efficiency life support systems
  • Research on long-duration missions without access to resupply missions from Earth
  • A platform for small companies to test technologies from various staging points around the solar system (more on this later)

These can be divided into two categories: research on human factors, and research on vehicle systems which until now have been unnecessary.

Fortunately, thanks to Mir and the ISS, we have lots of data on the effects of long-term weightlessness on human biology, and lots of data on how space vehicles degrade over the course of years. However, we still lack experience with maintaining space vehicles without constant access to the Earth (e.g. manufacturing new parts in space or creating highly redundant systems). We also don’t have experience creating closed-loop life support systems with extremely efficient recycling (the ISS is rather wasteful).

We can also gather a lot of data about the human factors on Earth. Data on radiation exposure from nuclear workers and people exposed to radiation sources is abundant. We can run more experiments like Mars 500 to gather psychological data. Researching the effects of long-term partial gravity is unfortunately quite difficult, but it is also one of the least important factors for now. We can safely ignore it.

Finally, it must be considered a necessity to include commercial efforts at every step in the process. Ultimately, it will be corporate entities that enable and support colonization efforts. NASA can and should play a critical role in enabling the development and testing of technologies by private entities. We have seen how valuable this synergy can be in the ISS; from launching cubesats to mounting experimental modules, smaller companies can gain invaluable operational experience. Resupply contracts from NASA essentially kept SpaceX afloat, arguably one of NASA’s more important contributions in the last 20 years.

So, any effort by NASA should focus on two goals: tackle the problems of closed-loop life support and long-duration mission maintenance, and provide a configurable, expandable framework for commercial involvement. Naturally, this necessitates the launching of astronauts beyond Earth orbit, so I think we’ve solved our existential question. Let’s move on to critiquing NASA’s proposal.

Being Useful

NASA has done a fantastic job of shoehorning itself into a host of arbitrary design constraints by jumping from plan to plan over the course of 4 administrations. Let’s enumerate them, and then evaluate the new proposal by its satisfaction of the constraints and goals.

  • The Orion MPCV exists. It can only be launched by the SLS, it can carry 4 people, and it can only re-enter from lunar velocities or less (why didn’t they design it for re-entry from Martian velocities, you ask? Good question).
  • The SLS exists. Block 1B can carry 105 mT to LEO, and 39 mT to a Translunar Injection (TLI). If it launches a co-manifested payload (CMP) with Orion, it can send 10 mT to TLI. Block 2 (first flight planned 2029) can carry 130 mT to LEO and 45 mT to TLI. It will fly once a year.
  • We want to utilize the 40 kW SEP module that was designed for the cancelled Asteroid Redirect Mission (ARM).
  • We have to do things around the Moon. Because reasons.

That last bullet point is motivated by the annoyingly persistent faction within NASA and the general spaceflight community that advocates for the development of a lunar infrastructure. I could write a whole other blog post on why any effort to develop infrastructure on the lunar surface is a huge waste of time, but needless to say, we should avoid it.

Let’s look at the decision to recycle ARM technology to propel the DSG and DST. There are a couple of good arguments for using SEP to reach Mars. Since the thrusters are much more well-behaved than chemical propulsion, we don’t have to worry about losing engines (which would spell certain doom for the mission). You also don’t have to worry about the boil-off of cryogenic propellants during transit. Additionally, your specific impulse is much higher, meaning the propellant mass can be lower. Or, alternatively, with the added delta-V from the same fuel mass, we can perform more orbital maneuvers or even return from Mars without ditching any parts of the vehicle.

There are also some arguments against SEP. It is slow to accelerate, which means your astronauts are going to be spending more time in space (bad). It also means that you have to stage the mission from Lunar orbit or a Lagrange point, since the vehicle would take multiple years to reach escape velocity from low Earth orbit (LEO). Staging the mission from beyond LEO means mass budgets are tighter. You also can’t refuel the vehicle using ISRU, ever. Since the propellant is argon or xenon, rather than methalox or hydrolox, you can’t refine it from water and carbon dioxide.

Given these tradeoffs, it’s easy to see why NASA would pick SEP for its long-duration human spaceflight missions. NASA is risk averse: they don’t want to rely on ISRU (a huge technical and logistical unknown) for a critical mission component, so that downside of SEP doesn’t matter to them. NASA detests the idea of resting mission success on machinery as notoriously unreliable and complicated (read: unrepairable) as a chemical thruster. Finally, the fact that SEP “forces” NASA to develop a lunar infrastructure is just icing on the cake.

The fact that using SEP means you can get the whole vehicle back from Mars rather shakes up the design of a Mars mission architecture. It suddenly makes sense to assemble your mission in cis-lunar space rather than launching each monolithic component directly to Mars, like in the Mars Direct architecture. And if you are assembling a mission in cis-lunar space, then it makes sense to build a space station to assist you logistically. If your mission has to be assembled in lunar orbit (because of SEP’s low thrust) then you have to build the space station in lunar orbit, which means you need a large rocket capable of lofting space station components into lunar orbit. Suddenly everything NASA has been doing, from the ARM to the SLS, becomes rationalized.

Except, wait a second. This sounds suspiciously like the original proposal for the STS. You build a space shuttle to launch space station and spacecraft components, and then you send out missions to the Moon and Mars from LEO. In the case of the STS, the Moon and Mars missions got cancelled, leaving only the space shuttle and a pared-down space station. Suddenly you have a space station that doesn’t serve any purpose beyond providing justification for continuing the shuttle program.

The new proposal falls along the same lines so perfectly that I suspect it may have been intentional. The first launch of a DSG segment is in 2022, which (if Trump gets re-elected) will be near the end of this administration. With a piece of hardware in space, the next administration will have no choice but to continue its construction. The DST will get cancelled or transformed into something else, and NASA will have an excuse to keep launching the SLS, and the DSG will become the next ISS (as the ISS is decommissioned in 2024, around the first time a crew is launched to the DSG).

Regardless of politics, the proposal meets all the constraints. The Orion is regularly sent to lunar orbit carrying astronauts and a 10 mT CMP to be added to a space station around the Moon. The astronauts spend their time assembling the space station and testing out its thruster module, which is a modified version of the propulsion module from the ARM. You use the heavy-lift capacity of the SLS to launch a SEP spacecraft to rendezvous with the station in lunar orbit, then send astronauts to test it out before making excursions to Mars. It’s so neat and tidy that I could put a bow on it.

It’s so neat that it’s easy to forget that the architecture barely addresses any of the useful existential reasons for sending humans into space in the first place. With annual resupply missions to the DSG and no permanent human habitation, there is little motivation to develop a closed-loop life support system. This only happens when we get to the DST. The strange thing, then, is that the shakedown cruise of the DST happens while attached to the DSG. A mission which is supposed to demonstrate that the DST could operate for three years without resupply or repair instead gets access to 40 mT of equipment and logistical supplies in the DSG—something that won’t be available during the DST’s real cruise to Mars. There is some room for research on long-duration mission maintenance with the DST, although it seems remote from NASA’s goals or desires.

At least the proposal does a good job of providing a framework for commercial involvement. There are even explicit slots on the manifest for commercially-contracted launches to service the DSG, and one can imagine that the station could play a support role for any commercial missions on the surface of the Moon (e.g. teleoperation and observation of the surface from above). The DSG could play a similar role as the ISS, deploying small scientific and commercial payloads into various lunar orbits (given its ability to perform extensive orbital maneuvers), and playing host to commercially-constructed modules.

The proposal doesn’t do a great job of enabling the exploration of Mars, unfortunately. The key problem, I think, is that NASA doesn’t plan on making more than a single DST. This is confusing to me, because it means that heavy payloads like landers, rovers, and ISRU experiments will need to be launched and transported separately. If you had multiple DSTs acting as tugs for both habitation modules and support equipment, you could assemble a mission in cis-lunar space at the DSG. As it is, any missions that need serious support hardware will have to rendezvous in Martian orbit.

So this means that the only purpose of the DSG is to provide a rendezvous point for the DST and the Orion capsule. In other words, the DSG doesn’t serve any purpose at all. Remember that the DSG only made sense as a logistical support for the assembly of a Mars mission in lunar space. If there isn’t any assembly required, you don’t need a rendezvous point.

Let’s break it down: you launch in an Orion and rendezvous in lunar orbit. You transfer to the DST, take it to Mars, and then come back. You transfer to an Orion capsule, and return to Earth. At no point does the DSG play a role beyond “crew transfer tube”. If you think it’s a place to store your Orion until you get back, think again; the Orion capsule is designed to support crew actively for no more than 21 days, and to stay in space no more than 6 months. That means that the capsule you are returning to Earth in is different from the capsule you launched in. At some point, an Orion will have to make an automated rendezvous in lunar orbit, and an Orion will have to make an unmanned return from lunar orbit. This renders the DSG rather useless as a component of a Mars mission architecture.

There are more reasons why only building a single DST doesn’t make any sense. First of all, putting crew in an untested vehicle is anathema to NASA—wouldn’t it be smart to send an uncrewed DST on a shakedown cruise, perhaps even using it to boost a scientific payload to Mars (hint: Phobos sample return mission)? Then they can iterate on the design and start building crewed DSTs. In the current plan, the lone DST gets a crewed shakedown cruise. What happens when they discover a problem? Do they try to jury-rig a fix? Do they ship replacement parts from Earth? Do they abandon the mission? Since NASA won’t be building future DSTs, there aren’t any opportunities to employ the hard-learned lessons from operating a space vehicle for a long duration. This defeats the whole purpose of NASA doing a Mars mission in the first place.

I don’t think NASA has put any real stock in this plan. Why would NASA launch the DSG as four 10mT chunks riding along with an Orion each time, when the same station could be launched as a single 40mT monolithic block by a single cargo launch? Why even build the DSG? Why build only one DST?

The Real Plan

Here’s what I think. This whole mission architecture is a sly way of fulfilling NASA’s dream of returning to the Moon and reliving the glory days of Apollo. The political likelihood of the DST getting cancelled in 2024 is high, given a turnover of the administration and the fact that the plan doesn’t do a great job of getting us to Mars. With the DST cancelled but the production of the remaining components of the DSG in high-gear, the new administration will be forced to authorize the completion of the DSG to avoid looking bad. However, to distance themselves from the previous administration, they will mandate that instead of being used for future Mars missions, the DSG will play a critical support role for future Moon missions.

This makes a lot of sense, because the DSG is fantastic if your plan is to send people to the Moon, rather than to Mars. You can dock a single-stage lunar lander to the DSG and send refueling missions from Earth between each sortie to the surface. Moreover, NASA can fund companies interested in mining water on the Moon because the DSG will need a steady supply of water and oxygen for its astronauts. From 2024 to 2032, NASA will be positioned to enable a veritable renaissance for lunar exploration and exploitation.

I will leave it to a future blog post to explain why focusing on the Moon is a huge waste of humanity’s time and America’s money. For now, let it suffice to say that it doesn’t bring us any closer to our original goal of aiding the eventual settlement of a self-sustaining colony on Mars.

Assuming that what NASA has proposed is notionally feasible, I propose that with a little bit of reordering and restructuring, the plan can be turned into something that actually advances humanity towards our distant goal of colonization.

My Plan

First, NASA’s plan calls for an uncrewed test launch of the SLS and Orion in 2019, which is a good idea in my book. It tests out the SLS, and let’s NASA test the Orion capsule in a multi-week mission in lunar orbit. However, the mission is slated to use a temporary second stage, because the so-called Exploration Upper Stage (which all future SLS missions will use) will not be ready by 2019. NASA’s plan also calls for launching a probe to Jupiter in 2021, which I also think is a great idea. It allows NASA to test out the new second stage without crew on-board.

However, with the 2022 launch of the SLS, I propose that the entire DSG is launched as a monolithic 40 mT station. A crewed launch of the SLS in the following year would spend up to 6 months aboard the station, consuming the 10 mT of food, air, and water brought along as a CMP. This would give them a chance to test all the station’s system, perform any necessary setup or repair tasks, maneuver the station into various orbits, and release some cubesats. Much like Skylab, there will likely be some issues discovered after the station’s launch, giving NASA a year to develop some fixes and include them in the 10 mT of CMP cargo.

One might object by pointing out that this means NASA will have to construct the logistics, habitation, and airlock modules of the DSG up to three years sooner than in the initial plan, and accelerated timelines are a Bad Thing. I would counter by pointing out that by making the station monolithic, all the mass required for docking interfaces and independent power management is removed. The station would also be much less volume-constrained, as they would only be constrained by the large 8.4 meter cargo fairing, rather than the significantly smaller interstage fairing that a CMP must fit into. This means that NASA engineers wouldn’t need to spend as long shaving off mass and fitting components into a smaller volume. NASA would also have a year or two of schedule wiggle room before the next presidential election and change of administration.

After the first crewed SLS launch in 2023 to the monolithic DSG, I propose a year gap in the schedule. I find it unlikely that they can ramp up from a first launch in 2019 to a launch every year in 2021, 2022, and 2023. There will be schedule slip. So the next crew launch would be in 2025 (potentially earlier, if they can manage it), bringing a 10 mT life support module as CMP to test new closed-loop life support technology. The crew would stay this time for roughly a year, testing the new life support capabilities and receiving shipments of commercial equipment.

To that end, starting in 2024 or earlier, commercially-contracted missions would resupply the DSG with life support consumables and fuel. They would also haul up new modules and equipment, ranging from expandable habitat modules to scientific sensors and communications arrays for controlling surface rovers. These launches would ideally be timed to occur before or during a crewed mission. While the uncrewed freighters would likely be able to dock autonomously, the crew would be required for installing new equipment both inside and outside the station.

In 2026, a prototype DST would be launched with a probe for taking samples from Phobos or Deimos. It would leave for Mars in the 2026 transfer window, and leave Mars in 2028 to return in July 2029. A cargo launch in 2027 would launch a second DST equipped with an integrated habitation and life support module, which would dock with the DSG and await the next crew launch.

A crewed mission launched in early 2028 or late 2027 would remain aboard the DSG until the prototype DST returned from its mission (staying for more than a year, as a dress rehearsal for a flight to Mars). The astronauts would perform a checkout of the returned DST and return to Earth with Phobos/Deimos soil samples from the probe. During their stay, they could perform a shakedown flight of the second DST in lunar space. After their departure, the first DST could be repurposed for a second unmanned mission or (more likely) put through rigorous operations in lunar orbit for stress testing.

Finally, two launches in late 2028 and early 2029 would loft a third DST with a small Martian lander equipped with ISRU, and a crew to transfer into the DST that launched in 2027. Both DSTs would depart immediately for Mars during the transfer window. The lander would carry out ISRU experiments on the surface while the crew remotely operated it from orbit. This presents a nice opportunity to allow sample retrieval from a previous sample-collecting rover mission, launching the sample into orbit using an ascent craft carried down by the ISRU lander. The astronauts in Martian orbit would retrieve the ascent craft and return to Earth with Mars surface samples. They would depart during the 2030 window, returning in September 2031. This mission would last for more than a year and a half, setting the stage for more aggressive missions in the future.

Let’s compare my plan against NASA’s: the DSG is operational by 2022 in my plan, rather than 2026. As a downside, the first crewed flight occurs a year later in my plan, and only two crewed missions take place by 2026, as opposed to NASA’s four. However, in my plan the second mission would last for about a year, rather than NASA’s 16-42 day missions. Under my plan, the DST would launch a year earlier and immediately be subjected to a test flight to Mars. Also, my plan piggybacks a valuable scientific probe on this test mission, allowing for an unprecedented scientific return (nobody has ever returned samples from other moons or planets).

When NASA’s plan has a crew performing a 221-day checkout mission for the first time in 2027, my plan calls for a roughly 400-day endurance mission around the same time that both runs diagnostics on a crewed DST (the purpose of the 221-day flight in NASA’s plan) and returns with samples from Phobos or Deimos. When NASA’s plan has astronauts performing a 400-day shakedown mission on the DST around the Moon (2029), my plan has astronauts on their way to Mars, with multiple long-endurance missions under their belt to validate long-duration survival in deep space.

Best of all, NASA’s plan uses 12 SLS launches before getting around to a crewed Mars mission “sometime after 2030”, while my plan uses 10 SLS launches to achieve a crewed Mars mission and performs two sample return missions to boot.

I think the most reasonable explanation, as I iterated above, is that NASA is trying to put off its Mars missions as long as possible until a new presidential administration redirects them to focus on lunar activities alone. I will leave it to another blog post to debunk the rationalizations for this ambition.

The Interplanetary Transport System

Space has been on my brain a lot lately. One of the causes was the long-awaited presentation by Elon Musk at the International Astronautical Congress (IAC) last month. During the talk, he finally laid out the details of his “Interplanetary Transport System” (ITS). The architecture is designed to enable a massive number of flights to Mars for absurdly low costs, hopefully enabling the rapid and sustainable colonization of Mars. The motivation behind the plan is a good one: humanity needs to become a multi-planetary species. The sheer number of things that could take civilization down a few pegs or destroy it outright is frighteningly lengthy: engineered bio-weapons, nuclear bombs, asteroid strikes, and solar storms crippling our electrical infrastructure are some of the most obvious. Rampant AI, out-of-control self-replicating robots, and plain old nation-state collapse from war, disease, and famine are some other threats. In the face of all those horrifying things, what really keeps me up at night is the fact that if civilization collapses right now, we probably won’t get another shot. Ever. We’ve abused and exhausted the Earth’s resources so severely, we simply cannot reboot human civilization to its current state. This is the last and best chance we’ll ever get. If we don’t establish an independent, self-sufficient colony on Mars within 50 years, we’ll have solved the Fermi Paradox (so to speak).

But Musk’s Mars architecture, like most of his plans, is ambitious to the point of absurdity. It at once seems like both fanciful science fiction and impending reality. Because Musk works from first principles, his plans defy socio-political norms and cut straight to the heart of the matter and this lateral approach tends to rub the established thinkers of an industry the wrong way. But we’ve seen Musk prove people wrong again and again with SpaceX and Tesla. SpaceX has broken a lot of ground by being the first private company to achieve orbit (as well as return safely to Earth), to dock with the International Space Station, and to propulsively land a part of a rocket from an orbital launch. That last one is particularly important, since it was sheer engineering bravado that allowed them to stand in the face of ridicule from established aerospace figureheads. SpaceX is going to need that same sort of moxie in spades if they are going to succeed at building the ITS. Despite their track record, the ITS will be deceptively difficult to develop, and I wanted to explore the new and unsolved challenges that SpaceX will have to overcome if they want to follow through on Musk’s designs.

SpaceX ITS Diagram

The basics of the ITS architecture are simple enough: a large first stage launches a spaceship capable of carrying 100 people to orbit. More spaceships (outfitted as tankers) are launched to refill the craft with propellants before it departs for Mars during an open transfer window. After a 3 to 6 month flight to the Red Planet, the spaceship lands on Mars. It does so by at first bleeding off speed with a Space Shuttle-style belly-first descent, before flipping over and igniting its engines at supersonic speeds for a propulsive landing. After landing, the craft refill its tanks by processing water and carbon dioxide present in Mars’s environment and turning them into propellant for the trip back to Earth. Then the spaceship simply takes off from Mars, returns to Earth, and lands propulsively back at home.

Now, there are a lot of hidden challenges and unanswered questions present in this plan. The first stage is supposed to land back on the launch mount (instead of landing on a pad like the current Falcon 9 first stage), requiring centimeter-scale targeting precision. The spaceship needs to support 100 people during the flight over, and the psychology of a group that size in a confined space for 6 months is basically unstudied. Besides other concerns like storing highly cryogenic propellants for a months-long flight, radiation exposure during the flight, the difficulty of re-orienting 180 degrees during re-entry, and the feasibility of landing a multi-ton vehicle on soft Martian regolith using powerful rocket engines alone, there are the big questions of exactly how the colonists will live and what they will do when they get to Mars, where the colony infrastructure will come from, how easy it will be to mine water on Mars, and how the venture will become economically and technologically self-sufficient. Despite all of these roadblocks and question marks, the truly shocking thing about the proposal is the price tag. Musk wants the scalability of the ITS to eventually drive the per-person cost down to $200,000. While still high, this figure is a drop in the bucket compared to the per-capita cost of any other Mars architecture on the table. It’s well within the net-worth of the average American (although that figure is deceptive; the median American net-worth is only $45,000. As far as I can figure, somewhere between 30% and 40% of Americans would be able to afford the trip by liquidating most or all of their worldly assets). Can SpaceX actually achieve such a low operational cost?

Falcon 9 Production Floor

Remember that SpaceX was originally targeting a per-flight price of $27 million for the Falcon 9. Today, the price is more like $65 million. Granted, the cost to SpaceX might be more like $35 million per flight, and they haven’t even started re-using first stages. But it is not a guarantee that SpaceX can get the costs as low as they want. We have little data on the difficulty of re-using cores. Despite recovering several in various stages of post-flight damage, SpaceX has yet to re-fly one of them (hopefully that will change later this year or early next year).

That isn’t the whole story, though. The Falcon 9 was designed to have the lowest possible construction costs. The Merlin engines that power it use a well-studied engine design (gas generator), low chamber pressures, an easier propellant choice (RP-1 and LOX), and relatively simple fabrication techniques. The Falcon 9 uses aluminum tanks with a small diameter to enable easy transport. All of their design choices enabled SpaceX to undercut existing prices in the space launch industry.

But the ITS is going to be a whole other beast. They are using carbon fiber tanks to reduce weight, but have no experience in building large (12 meter diameter) carbon fiber tanks capable of holding extremely cryogenic liquids. The Raptor engine uses a hitherto unflown propellant combination (liquid methane and liquid oxygen). Its chamber pressure is going to be the highest of any engine ever built (30 MPa. The next highest is the RD-191 at 25 MPa). This means it will be very efficient, but also incredibly difficult to build and maintain. Since reliability and reusability are crucial for the ITS architecture, SpaceX is between a rock and a hard place with its proposed design. They need the efficiency to make the system feasible, but the high performance envelope means the system will suffer less abuse before needing repairs, reducing the reusability of the system and driving up costs. At the same time, reusability is crucial because the ITS will cost a lot to build, with its carbon fiber hull and exacting standards needed to survive re-entry at Mars and Earth many times over.

It’s almost like the ITS and Falcon 9 are on opposites. The Falcon 9 was designed to be cheap and easy to build, allowing it to be economical as an expendable launch vehicle, while still being able to function in a large performance envelope and take a beating before needing refurbishment. The ITS, on the other, needs all the performance gains it can get, uses exotic materials and construction techniques, and has to be used many times over to make it an economical vehicle.

All of these differences make me think that the timeline for the development of the ITS is, to put it mildly, optimistic. The Falcon 9 went from the drawing board to full-stack tests in 6 years, with a first flight a few years later. Although the SpaceX of 2004 is not the SpaceX of 2016, the ITS sure as hell isn’t the Falcon 9. A rocket using the some of the most traditional and well-worn engineering methods in the book took 6 years to design and build. A rocket of unprecedented scale, designed for an unprecedented mission profile, using cutting-edge construction techniques… is not going to take 6 years to design and build. Period. Given SpaceX’s endemic delays with the development of the Dragon 2 and the Falcon Heavy, which are a relatively normal sized spaceship and rocket, respectively, I suspect the development of a huge spaceship and rocket will take more like 10 years. Even when they do finally fly it, it will take years before the price of seat on a flight falls anywhere as low as $200,000.

Red Dragon over Mars

If SpaceX manages to launch their Red Dragon mission in time for the 2018 transfer window, then I will have a little more hope. The Red Dragon mission needs both a proven Falcon Heavy and a completely developed Dragon 2. It will also allow SpaceX to answer a variety of open questions about the mission profile of the ITS. How hard is it to land a multi-ton vehicle on Martian regolith using only a powered, propulsive descent? How difficult will it be to harvest water on Mars, and produce cryogenic propellants from in situ water and carbon dioxide? However, if SpaceX misses the launch window, I definitely won’t be holding my breath for humans on Mars by 2025.

Fetishizing Apollo

America has an unhealthy obsession with historic US space missions. This obsession is even more pronounced in the space-enthusiast community; it is no surprise that there are multitudes of mods for KSP that allow users to build and fly their very own Saturn V rocket. Really, America’s fixation on the 1960s and -70s era NASA programs has achieved a pornographic level (I use this word not in the sexual meaning, but in the same sense as in the pornography of violence).

It is an understandable attraction, I suppose — many of the iconic space photographs were taken by Apollo astronauts.

earthrise astronaut fullearth

Landing people on the Moon might be considered one of mankind’s greatest achievements, and was certainly the height of glory for the US space program.

But the level at which America has turned the moon missions into a fetish is astounding. Countless books, movies, rehashed TV series, photo remasters, articles, celebrations… it’s depressing.

We should appreciate Apollo for what it was: an antenna. Celebrating Apollo is like including the antenna mast in the height measurement for a really tall building. Yes, the fact that we stuck a tall pole on top of a tall building is cool, but it’s not really the pole that you’re interested in, is it?

People like thinking about Apollo because they like the idea of humans expanding into space, and in their mind Apollo is the farthest we’ve ever gotten towards that goal. It’s an understandable misconception, considering the Moon is literally “the farthest humans have ever gone”. But Apollo was unsustainable (even if the Apollo Applications Program had gone forwards, it still would have been a step in the wrong direction!). We are now much closer to accomplishing the goal of long-term human expansion into space than we ever were.

SLS, more like SMH

Granted, it won’t be painted the same way in real life.

This is why the SLS is so disappointing, I think. Right now we have highly advanced computing and robotics technologies, excellent ground support infrastructure for space missions, incredibly advanced materials knowledge, and a huge array of novel manufacturing techniques being developed. As a civilization, we are much more ready to colonize space than we were a half-century ago. Yet the government has decided the best way to start human expansion into space is to build a cargo cult around Apollo. The US is building a rocket that looks like the Saturn V, as if some sort of high-tech idolatry will bring back the glory of Apollo. They are resurrecting an architecture that was never a good idea to begin with!

The space program paradigm is outdated. Despite my most optimistic hopes, let’s be real: the next big driver in space travel will be high-power corporations following the profits of a few innovative companies that pioneer the market. It won’t be enthusiastic supporters than become the first space colonists, but employees doing their stint in the outer solar system before returning to Earth.

On the SLS

NASA has always built its house on political sand, not rock. While they can get lots of funding at the political high-tide, they can also get bogged down to failure. For instance, the ill-fated Space Shuttle program (or STS) was a result of shifting goals and influences on design from disparate sectors.

Similarly, the new Space Launching System (or SLS) is the brainchild of political forces. Its first stage is an extended Space Shuttle External Tank, and its first-stage engines are Space Shuttle Main Engines. Its solid boosters are STS-derived. This means that most of the STS tooling can be kept, and thus constituencies keep their jobs. I have to admit, this re-use reduces design times, but it is not the most efficient way to build a heavy launch vehicle, especially since the technology is more intricate than it needs to be (jacking up production costs).

The SLS is designed to launch the Orion capsule, which was designed as part of the under-funded Constellation program. The Orion spacecraft uses the Apollo architecture, and NASA helps this comparison by painting the SLS with white-and-black roll patterns reminiscent of the famous Saturn V rocket. Combined with the use of STS systems, the SLS threatens to become one big nostalgic mash. Unfortunately for NASA, this means its shortcomings will be overlooked in the future, much like the Space Shuttle program.

For instance, nobody is quite sure what to do with the damn thing after we’ve designed and built it. NASA has recently released that instead of a circum-lunar flyby, the first manned mission of the Orion/SLS will visit an asteroid that will be tugged into orbit around the Moon. After that, everyone seems to throw up their hands and say, “Mars? I guess?”

Criticisms aside, its good that we are developing any sort of heavy-lift manned capacity, because eventually it will enable deep-space missions. I’m just worried that the SLS program isn’t coherent enough to survive shifts in funding or vision. Not that NASA is particularly gifted in either of those departments. With their limited funding, I’m more interested in their robotic missions (or potential thereof — submarine to Europa, anyone?), because any manned program in the near future will consist of paddling around in the metaphorical kiddy pool.

Interstellar Colonization Will Never Happen

There really isn’t an economical explanation for why a civilization would engage in long-range interstellar colonization.

To begin with, though, let’s look at interplanetary colonization. Why, for example, would someone fund the establishment of a permanent colony on Mars with the intent for it to become eventually self-sustaining? It’s not to relieve population pressure. Stuff is so ridiculously expensive to get into space that you’d be better off (from a monetary perspective) paying the people to live in the Sahara. It’s not for resources; asteroid mining is almost certainly a feasible economic opportunity, but the cost of lifting resources into orbit is again the obvious barring factor. It could be scientific, but scientific missions wouldn’t need to be self-sustaining or long-term. Perhaps a stint of 20 years on the surface. It could be done by a separatist group (plenty of people want to go start small settlements in the wilderness), but even if the money was raised (which is unlikely), the colony will lie on the fringes of human society. They would probably be unable to arrange a return trip, even if they wanted to, and nobody else (except more fringe groups) would want to continue colonization.

There is one argument that seems reasonable: outposts could serve as refueling stations for outbound craft (asteroid mining operations, etc). However, it would make more sense to pull these resources from asteroids and place an automated fuel refinery in high orbit around Mars (or other suitable candidate).

Many of the reasons listed above carry over to interstellar missions. The only difference is that groups would have much more trouble raising money for the mission, and that now lifting stuff into orbit isn’t the only tough part, but also accelerating your spaceship to a speed which makes for a bearable trip length.

Here are some scenarios where we do send a colonizing mission: we discover evidence of alien life, or the ruins of an alien civilization. It would only make sense to send a colonizing mission. Sending a scientific detachment with a planned return trip would be so expensive that it wouldn’t be worth it. I mean, it would be worth it, but nobody would be able to raise the funds.

Another scenario in which most of the above arguments go out the window: we build a space elevator. That removes the gateway for getting into orbit. We could expect many more people accessing and living in orbit (because they feel like it and the price is low enough). Once the population already flying around the solar system reaches a critical mass, colonizing Mars becomes a trivial step.


Actually, it came to me after I wrote this post that there may be one reasonable explanation for colonizing Mars: if we fail to find an economical way to increase biomass production either on Earth or in space, we will need large tracts of arable land. Terraforming Mars would provide this. However, the cost of lifting and storing that biomass may make it less preferable to aerocultures in orbit.


Here is a story I recently wrote. It was written over the course of an afternoon, for a school assignment.


One of the first few expeditions found him. As they plunged off their boat into the icy Atlantic and slogged onto Snaeland at, as they dubbed it, Seydisfjordur, his hollow ravings echoed down from the foothills and caused much inquiry. A group of the Norsemen set out from the expedition’s shore-side camp, and hiked up towards the source of these cries. They found him living in the carcass of a busse; the ship looked like it had been washed into the mountains, its beams broken across the crevices of the hills, its oars splintered on the tall pines. The Norsemen, not a little confused, dragged the raving lunatic back to their camp and kept him in an uthu adjoining the longhouse. For the next two nights, the Norsemen argued over what to do. Some wanted to hang him as an offering to the All-Father, but most were willing to wait and hear the prisoner’s explanation before deciding. How could such a heavy ship be lifted inland as far as a day’s walk?

After a few days of food and drink, the man began to speak some sense. They found his name was Gormund. As soon as this news spread, everyone was intensely curious to hear his story. In slow strides of language, Gormund began a discourse. His clothes were ragged and his hair long and unkempt, but his tongue was as erudite as the best skald. Gormund held himself very calmly, but every word he spoke was laden with insanity. Over the course of two days Gormund disgorged an enthralling madman’s tale.

He detailed an expedition made from Volmong (after explaining that Volmong was a Norse settlement hidden away in the mountains of Iberia, which was met by much disbelief), which had raided a string of monasteries. As they found out, these monasteries housed adherents to the Societas Eruditorum. Soon they had Charlemagne breathing down their necks. Pressed, the settlement held a thing, in which they decided that Volmong was doomed. The settlement was the size of a hundred, and leaving was never really an option, though not for lack of trying. The Norseman’s place is on the sea, not in the highlands; the settlers of Volmong were folly for ignoring that. The slow caravan to the coast was cut down en masse by the underfed armies of the mainland conqueror. Only a handful of longships left the Iberian shore, and fewer navigated the Channel successfully.

On the third day of Gormund’s consciousness, his narrative was cut short when a lookout cried from the palisade. A Gaelic warship had appeared off the coast. The men, suddenly electrified by the chance of combat, began to arm themselves, and pushed off in one of their three longships, dragging Gormund along in spite of, as they found, his deathly fear of the sea. As their longship drew closer to the Gaelic craft, the Norsemen made out its shape: it had the contours, in the front, of a Roman bireme, maybe a trireme, but as it turned they saw that the back was rough and squarely built. When the ships were three thousand fot apart, the Norsemen saw why; a massive ballista was mounted on the head of the Roman warship.

Too late to reconsider tactics, and already heady from bloodlust, the Norse threw their backs into the oars and plowed towards the Gaelic ship at ramming speed. The Gaels loosed a flaming bolt from the ballista, which struck the drum beater. The weight of the shaft sheared his body in two, and the flaming oil spilled across the deck of the longship. With cadence broken, the oarsman made slower progress, but still they closed the gap between the ships. Another bolt was loosed, and it struck the side of the longship, shearing away many oars. Crippled, the Gaels lobbed flaming bales of hay onto the longship, and sat apart as the burning wreck sank into the cold Atlantic.

The Gaels dragged the two floating survivors aboard. One was conscious, and lashed out at his rescuers. They cut his throat and dumped him into the ocean. The other corpse was limp, but after some time of lying on the deck, he awoke, sputtering. The druid aboard hoisted the man up and pressed him against the forward mast, seeking fear in his prisoner’s eyes. But as the druid gazed, he saw a spark erupt within the Norseman’s eyes. Backing away in fear, he averted his gaze as the man’s face glowed an unearthly pallor. Gormund then spoke out in Gaelic, in an attempt to quell his captor’s fear. Of course, this was in his best interest; he didn’t want these Britons dumping his lifeless body in the cold Atlantic. He said, “I am Gormund, son of Bjiolnir. Bring me to Kaupang.” The Gaels could do nothing but obey him, and so they sailed to Kaupang. They left him on the ocean-shore of Outer Kaupang.

When he reached a fishing village on the bay-shore, the villagers took him in as a fellow Norseman. When beseeched to explain his business, he refused. When pressed, he warily recounted his passage from Seydisfjordur. The villagers, realizing he was a madman, locked him in the boathouse. The next morning they sent an envoy to Inner Kaupang to inform the herad-lord of a madman who claimed to hail from Snaeland. The herad-lord, on a whim, called for the man to be brought to his longhouse.

The next day, Gormund was brought before Þorhrafn, the herad-lord. “I am Þorhrafn, son of Harald, son of Refrbrandr, chieftain of Kaupang and contender for the throne of Skiringssal. Name yourself,” commanded Þor.

“I am Gormund, son of Bjiolnir. I hail from this town.”

“You say you live here, eh? You claim to have come from Snaeland.”

“I was with a landing at Seydisfjordur, when a Gaelic warship sunk the Karvi we launched. I convinced the Gaels to transport me here.”

“A Gaelic ship got you? Hah! And you convinced a ship of victorious Gaels to ferry you a hundred vei? How’d you manage that? Got an all-tongue, do you?” The chieftain guffawed.

“Yes, I have been granted such powers by the gods.” At this, the herad-lord let out a cry, and doubled over laughing.

“Qlfuss tunga! Hah!”

“I was at Volmong, where we raided Societas Eruditorum bastions. They have unlocked many secrets of the gods.”

“Bahahaha! What is Volmong? You’re a crazy ‘kilg’n!” The chieftain turned to his attendant warriors, “Give his life to the All-Father.”

Gormund spoke out again, his voice slightly modulated, “Do you want to know how I got to Snaeland?” The warriors paused. “As I was sailing home, to Kaupang, when the worst storm any of us had ever seen beset our ships. Waves like giants walked among us, and threatened to carry our busse from the sea and into the sky. One by one, we lost sight of the other boats, their calls spirited away on more powerful gales, their image divided from us by sheets of water, and their wake obliterated by the churning of the sea. The sky and water were the same color, and the water so enveloped us that there became no difference between air and water, sky and sea, light and dark. The same wet grayness surrounded us for what seemed like an eternity.

“I hope the others fared better than our lot, but since you seem to be unaware of any return, I can only assume they succumbed to the sea, their valiant defense of the ship falling to a crushing blow of water… such a fate would be better than our own.

“At one point, I became distinctly aware that a set of eyes besides our own were among us. Yet every time I would turn to face the intruder, I found nothing. But then I, and others, noticed a transient murky form beneath us. Moments passed, in which the sea seemed to calm. Then a crew member cried out; the largest wave I have ever seen, seeming to rise above the sky itself, towered above us. As I watched, two glowing eyes pierced through the gray veil of the water, followed by a hulking, coiled shadow beneath the surface. I made out two enormous wings, limbs, and a wrapping tail. A silence descended, in which only the rushing of water was heard. Somebody cried, “Jormungandr.” Then the world went dark.


“The next thing I recall is being found in Snaeland by the Seydisfjordur expedition. When I regained sanity, I remembered in a rush the campaign in Iberia. The Societas Eruditorum had given me things stolen from the vaults of the gods. Loki sent the World Serpent to apprehend me, to destroy my ship and return what was taken. Jormungandr’s storm carried our ship to Snaeland, and only I survived. I suspect that Jormungandr will return; he didn’t get what he wanted. My purpose in returning to Kaupang is to raise a force to fight him off.” As Gormund finished, the throne chamber echoed emptily. Þor considered these words, rolling his tongue around in his mouth as if appraising the taste of the tale. The only noise was the crackle of the fire. Then the herad-lord snorted.

“That is quite the tale. And one I’m not particularly inclined to believe. Even if I thought you weren’t a qlfuss, your story doesn’t make sense. Why wouldn’t the Serpent get you while in transit from Snaeland? Why not send a god to take back… whatever you stole, rather than a Loki-spawn, no less? Would not Jormungandr’s release of Midgard to attack you allow the oceans to spill over? And what was it that you stole?”

“The all-tongue, to name one.” Gormund paused, and was about to speak again but was interrupted by a courier, bursting into the chamber.

“The sea is boiling!” he cried. Everyone rushed outside. Gazing at the sea from atop the town-fort walls, they saw that indeed, the frothy waves had sheets of steam rising off them. A storm had come up, and dark clouds coated the Kaupang coast. Giant waves smashed the shore, breaking some of the boathouse piers. Then, from the water, a tower column of scales and flesh emerged, atop which sat a terrible head, with a maw lined with innumerable teeth. A horror fell upon the lord and his warriors.

Gormund muttered under his breath, “Jörmungandr.”

%d bloggers like this: